Original Russian Text Copyright © 2002 by Shurdumov, Trunin, Kuchukova.

Thermal Analysis of Pseudoternary Systems $Me_4P_2O_7$ - WO_3 -MeCl (Me = Na, K)

B. K. Shurdumov, A. S. Trunin, and M. A. Kuchukova

Kabardino-Balkarian State University, Nalchik, Kabardino-Balkaria, Russia Samara State Technical University, Samara, Russia

Received June 26, 2000

Abstract—Thermal analysis of the pseudoternary systems $Na_4P_2O_7$ — WO_3 —NaCl and $K_4P_2O_7$ — WO_3 —KCl was performed, and the crystallization fields were revealed of sodium and potassium pyrophosphates, incongruently melting compounds $Na_4P_2O_7 \cdot 3WO_3$ and $K_4P_2O_7 \cdot 3WO_3$, and of products formed by reactions of WO_3 with NaCl and KCl. Low-melting compositions were revealed, which are of interest for preparing Na(K)—W oxide bronzes.

Powders of tungsten oxide bronzes can be prepared both chemically and electrochemically from melts based on polytungstates and alkali metal phosphates [1, 2].

Therefore, to reveal compositions with optimal physicochemical properties, we performed in this work the thermal analysis of the pseudoternary systems $Na_4P_2O_7$ – WO_3 –NaCl and $K_4P_2O_7$ – WO_3 –KCl.

Binary systems. Although data on the systems $Na_4P_2O_7$ –NaCl and $K_4P_2O_7$ –KCl are available [3], we have studied them anew. The components of these systems form eutectics with the compositions 20 mol % NaCl and 11 mol % KCl and melting points 565 and 738°C, respectively (Figs. 1, 2).

The systems $Na_4P_2O_7$ – WO_3 and $K_4P_2O_7$ – WO_3 were studied in [4–6]. The components of these sys-

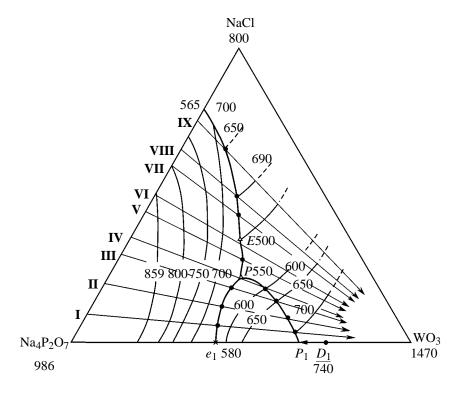


Fig. 1. Melting diagram of the system $Na_4P_2O_7$ - WO_3 -NaCl (the temperatures are in °C).

1070-3632/02/7205-0675 \$27.00 © 2002 MAIK "Nauka/Interperiodica"

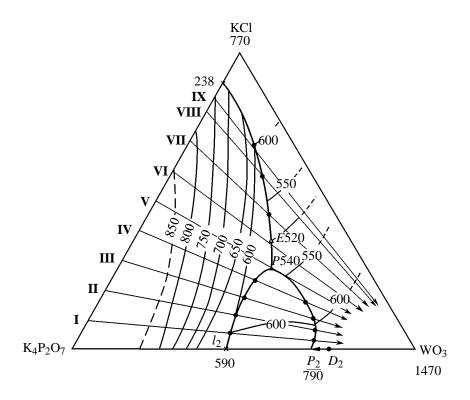


Fig. 2. Melting diagram of the system K₄P₂O₇-WO₃-KCl (the temperatures are in °C).

tems form incongruently melting compounds D_1 Na₄P₂O₇·3WO₃ and D_2 K₄P₂O₇·3WO₃ with the peritectic points P₁ (66 mol % WO₃, 740°C) and P₂ (70 mol % WO₃, 790°C).

In these systems, there are eutectic points with the compositions e_1 42 mol % WO₃ and e_2 45 mol % WO₃ and melting points 580 and 590°C, respectively.

Table 1. Characteristics of nonvariant points of the pseudoternary systems $Na_4P_2O_7$ -WO_3-NaCl and $K_4P_2O_7$ -WO_3-KCl

Desig- nation	Composition, mol %			Tamma			
	Na ₂ P ₂ O ₇ or K ₂ P ₂ O ₇	WO ₃	NaCl or KCl	Tempe- rature, °C	Point		
Na ₂ P ₂ O ₇ –WO ₃ –NaCl							
E	33	32	35	560	Eutectic		
P	40	40	20	550	Transition Peritectic		
P_1	_	66	_	740			
$K_2P_2O_7$ – WO_3 – KCl							
E	23	40	37	520	Eutectic		
P	27	43	30	540	Transition Peritectic		
P_1	_ L	70	_ L	690 L			

X-ray diffraction study of the new phases D_1 and D_2 formed in these systems shows that the process is considerably more complex than mere adduct formation and involves rearrangement of anions in the initial compounds:

$$Na_4(K_4)P_2O_7 + 5WO_3 \rightleftharpoons Na_2(K_2)O \cdot P_2O_5 \cdot 3WO_3 + Na_2(K_2)W_2O_7.$$
(1)

The reaction mechanism can be interpreted in more detail in terms of acid-base interactions in melts. In the reaction with WO_3 , phosphates transform into more acidic forms, and WO_3 , into a more basic form:

$$Na_4(K_4)P_2O_7 + WO_3 \longrightarrow 2Na(K)PO_3 + Na_2(K_2)WO_4.$$
 (2)

The products of reaction (2), sodium (or potassium) metaphosphate and tungstate, combine to form the product of reaction (1).

The systems NaCl-WO₃ and KCl-WO₃ were studied previously [7]. In these systems WO₃ reacts with NaCl or KCl to form alkali metal tungstate and tungsten oxychlolride, e.g.,

$$2Na(K)Cl + 3WO_3 \longrightarrow Na_2(K_2)WO_4 + WO_2Cl_2$$
.

Therefore, the systems studied in this work should be regarded as pseudoternary systems.

Table 2. Characteristics of interception points of internal sections of the pseudoternary systems $Na_4P_2O_7$ — WO_3 –NaCl and $K_4P_2O_7$ — WO_3 –KCl

Sec- tion no.	Initial composition, mol %	WO ₃ added, mol %	Tempe- rature, °C				
Na ₄ P ₂ O ₇ –WO ₃ –NaCl							
I	$90\% Na_4 P_2 O_7 + 10\% NaCl$	40	590				
		65	700				
II	$80\% \text{Na}_4 \text{P}_2 \text{O}_7 + 20\% \text{NaCl}$	40	580				
		60	680				
III	$70\% \text{Na}_4 \text{P}_2 \text{O}_7 + 30\% \text{NaCl}$	32	570				
		55	640				
IV	65%Na ₄ P ₂ O ₇ + $35%$ NaCl	40	550				
		48	600				
\mathbf{V}	55%Na ₄ P ₂ O ₇ + $45%$ NaCl	37	540				
VI	$50\% \text{Na}_4 \text{P}_2 \text{O}_7 + 50\% \text{NaCl}$	32	550				
VII	$40\% \text{Na}_4 \text{P}_2 \text{O}_7 + 60\% \text{NaCl}$	28	520				
VIII	$35\% Na_4 P_2 O_7 + 65\% NaCl$	25	600				
		36	530				
IX	$25\% \text{Na}_4 \text{P}_2 \text{O}_7 + 75\% \text{NaCl}$	12	650				
		38	550				
$K_4P_2O_7$ – WO_3 – KCl							
I	$90\% K_4 P_2 O_7 + 10\% KC1$	43	600				
	4 2 - 7	72	670				
II	$80\% K_4 P_2 O_7 + 20\% KC1$	42	580				
	4 2 7	70	600				
III	$70\% K_4 P_2 O_7 + 30\% KC1$	40	570				
	4 2 7	65	590				
IV	$60\% K_4 P_2 O_7 + 40\% KCl$	42	560				
	4 2 7	60	570				
\mathbf{V}	$50\% K_4 P_2 O_7 + 50\% KC1$	43	540				
VI	$40\% K_4^7 P_2^7 O_7^7 + 60\% KC1$	40	520				
VII	$30\% K_4^4 P_2^2 O_7^7 + 70\% KC1$	40	530				
	,	55	540				
VIII	$20\% K_4 P_2 O_7 + 80\% KC1$	45	545				
	,	30	560				
IX	$15\% K_4 P_2 O_7 + 85\% KC1$	20	600				
	L	<u>L</u>	L				

Ternary systems. To construct the liquidus surfaces of the pseudoternary systems $Na_4P_2O_7$ – WO_3 –NaCl and $K_4P_2O_7$ – WO_3 –KCl, we studied for each system nine internal sections and revealed the crystallization fields of sodium and potassium pyrophosphates, incongruently melting compounds D_1 $Na_4P_2O_7 \cdot _3WO_3$ and D_2 $K_4P_2O_7 \cdot _3WO_3$, and products of reactions of NaCl and KCl with WO_3 (Figs. 1, 2).

A particular mention should be made of the field of unstable state of the reaction products of WO₃ and NaCl or KCl. This field does not correspond to any

definite phase, because, as mentioned above, the initial components react to give sodium (or potassium) tungstate and tungstent oxychloride.

The characteristics of the nonvariant points and interception points of the internal sections of the systems are given in Tables 1 and 2.

Our results show that the structure of the melting diagrams of the systems under consideration is determined by interaction of the components of the binary subsystems, and the phase equilibria should be considered with due regard to the reactions occurring in the system.

Also, low-melting compositions in the vicinity of ternary eutectics (mp 500-550°C) can be used for preparing Na(K)-W oxide bronzes.

EXPERIMENTAL

Thermal analysis was performed by visual polythermal and, in part, by thermographic (DTA) methods.

The initial sodium and potassium pyrophosphates and chlorides (analytically pure grade) were recrystallized and dried at 250–300°C. Tungsten oxide was of ultrapure grade.

REFERENCES

- 1. Shurdumov, B.K., Shurdumov, G.K., and Kuchukova, M.A., USSR Inventor's Certificate no. 1244 206, 1986, *Byull. Izobret.*, 1986, no. 26.
- 2. Shurdumov, B.K., Shurdumov, G.K., and Kuchukova, M.A., RF Patent 2138445, 1999.
- Posypaiko, V.I., Alekseeva, E.A., and Vasina, N.A., Diagrammy plavkosti solevykh sistem: Spravochnik (Melting Diagrams of Salt Systems: Handbook), Moscow: Metallurgiya, 1979, part 3, pp. 74, 151.
- 4. Bergman, A.G. and Semenyakova, L.V., *Zh. Neorg. Khim.*, 1970, vol. 15, p. 1386.
- 5. Shurdumov, B.K., Shurdumov, G.K., and Semchenko, D.P., *Khim. Tekhnol. Molibd. Vol'frama (Nalchik)*, 1971, no. 1, pp. 269–280.
- 6. Shurdumov, B.K., Shurdumov, G.K., and Semchenko, D.P., *Khim. Tekhnol. Molibd. Vol'frama (Nalchik)*, 1972, no. 2, pp. 220–304.
- Shurdumov, G.K., Ul'basheva, R.D., Baragunova, L.Kh., and Kodzokov, Kh.A., Sintez i issledovanie elektro-khimicheski aktivnykh soedinenii na osnove MoO₃ i WO₃ (Synthesis and Study of Electrochemically Active Compounds Based on MoO₃ and WO₃), Research Report of the Kabardino-Balkarian State University, Nalchik, 1982, no. 77 006 800.